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Abstract 

 

Initial classification of acute leukemia involves the assignment of blasts to cell states within the 

hematopoietic hierarchy based on morphological and immunophenotypic features. Yet, these 

traditional classification approaches lack precision, especially at the level of immature blasts. 

Single-cell RNA-sequencing (scRNA-seq) enables precise determination of cell state using 

thousands of markers, thus providing an opportunity to re-examine present-day classification 

schemes of acute leukemia. Here, we developed a detailed reference map of human bone marrow 

hematopoiesis from 263,519 single-cell transcriptomes spanning 55 cellular states. Cell state 

annotations were benchmarked against purified cell populations, and in-depth characterization of 

gene expression programs underlying hematopoietic differentiation was undertaken. Projection 

of single-cell transcriptomes from 175 samples spanning acute myeloid leukemia (AML), mixed 

phenotype acute leukemia (MPAL), and acute erythroid leukemia (AEL) revealed 11 subtypes 

involving distinct stages of hematopoietic differentiation. These included AML subtypes with 

notable lymphoid or erythroid lineage priming, challenging traditional diagnostic boundaries 

between AML, MPAL, and AEL. Quantification of lineage priming in bulk patient cohorts revealed 

specific genetic alterations associated with this unconventional lineage priming. Integration of 

transcriptional and genetic information at the single-cell level revealed how genetic subclones can 

induce lineage restriction, differentiation blocks, or expansion of mature myeloid cells. 

Furthermore, we demonstrate that distinct cellular hierarchies can co-exist within individual 

patients, providing insight into AML evolution in response to varying selection pressures. 

Together, precise mapping of hematopoietic cell states can serve as a foundation for refining 

disease classification in acute leukemia and understanding response or resistance to emerging 

therapies.  
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Introduction 

 

Hematopoietic differentiation is perturbed in acute leukemia, yet leukemia cells still retain features 

of hematopoietic differentiation. These features play a critical role in initial disease classification, 

wherein morphological and immunophenotypic markers are used to assign leukemic blasts to 

broad hematopoietic lineages 1. Yet, these markers lack precision in discerning between specific 

cell states within a hematopoietic lineage, particularly at the level of immature blasts. Single-cell 

RNA sequencing (scRNA-seq) provides thousands of new markers to enable precise 

determination of leukemia cell state. This provides an opportunity to refine our existing 

classification of acute leukemia. 

 

This is particularly important within acute myeloid leukemia (AML) due to extensive variation in 

leukemic blast involvement within the myeloid lineage. It is well established that AML cells within 

individual patients form cellular hierarchies spanning multiple hematopoietic differentiation 

stages, sustained by primitive leukemia stem cells (LSCs) at the apex. Pioneering studies 

mapping AML cells to early scRNA-seq landscapes of human hematopoiesis have revealed 

variation in leukemia cell hierarchies between patients 2,3 and subsequent work inferring AML 

hierarchy composition from bulk patient cohorts has linked this variation to survival, relapse, and 

drug sensitivity 4,5. With cellular hierarchies emerging as a clinically relevant approach for 

understanding heterogeneity in AML, there is a need for more precise mapping of leukemia cell 

states, as this may inform disease-specific targeted therapies.  

 

Present-day purification schemes of human hematopoietic stem and progenitor cell (HSPCs) 

subsets have been refined through decades of functional studies 6–12. Deep multi-omic profiles of 

these HSPC subsets have revealed thousands of genes and chromatin regions underlying each 

stage of hematopoietic differentiation 13–15. Recent advances in single-cell RNA-sequencing 

(scRNA-seq) have further improved our understanding of the downstream differentiation 

trajectories taken by individual HSPCs 3,16–23. However, existing single-cell landscapes of human 

hematopoiesis are limited by a lack of sufficient HSPCs 17–19,24, low overall cell numbers 2,3, or a 

lack of transcriptome-level information 25. Furthermore, transcriptional definitions of the most 

primitive hematopoietic stem cells (HSCs) and their downstream progenitors vary from study to 

study, posing challenges for the design of functional studies based on findings from single-cell 

analyses 26. 
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Here, we present a reference map integrating bulk and CD34-sorted datasets, comprising 

263,159 high-quality single-cell transcriptomes. This map offers balanced proportions of early 

HSPCs and terminally differentiated immune cells. We validated our transcriptionally defined cell 

states with profiles from immunophenotypically pure populations and constructed a publicly 

available R package enabling rapid projection and classification of new scRNA-seq data using 

this reference map. Applied to scRNA-seq profiles from 175 diverse leukemia samples with 

myeloid lineage involvement, we identify 11 subtypes based on differentiation stage involvement. 

We also nominate genetic alterations driving unconventional lineage priming towards lymphoid 

and erythroid lineages. Finally, through integrated scRNA-seq and targeted DNA profiling we find 

that, on rare occasions, distinct leukemia cell hierarchies can co-exist within individual patients.  

 

 

Methods 

 

Biological Samples:  

All samples were collected with informed consent according to procedures approved by either the 

University Health Network (UHN) Research Ethics Board or St Jude Children’s Research Hospital 

(SJCRH) Institutional Review Board. Human CB samples were obtained from Trillium Health, 

Credit Valley, and William Osler Hospitals in Ontario. Primary AML samples obtained from the 

Munich Leukemia Laboratory (MLL) (n = 12) were processed for scRNA-seq with 10x 5’ v1.1 

technology at SJCRH, and 2 primary AML samples obtained from the Princess Margaret Hospital 

(PMH) Leukaemia Bank were processed for scRNA-seq with 10x 3’ v3 technology at PMH, per 

manufacturer instructions.  

 

Computational Analyses:  

scRNA-seq preprocessing was performed using seurat 27 and scanpy 28 and customized for each 

dataset based on quality control (QC) metric distributions. Batch correction of scRNA-seq 

datasets was performed with harmony 29 and reference map projection was performed using 

symphony 30. Differential expression analyses utilized DESeq2 31 at the level of pseudo-bulk 

profiles. Gene expression modules were defined by cNMF 32, transcription factor regulons were 

defined by pySCENIC 33, and signature scoring was performed using AUCell 34. Pseudo-time 

inference was performed using Monocle3 35. For genotyping analysis from scRNA-seq, expressed 

mutations and gene fusions were called by cbsniffer (https://github.com/genome/cb_sniffer) while 

copy number alterations were called by inferCNV (https://github.com/broadinstitute/inferCNV).  
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Full details regarding additional experimental and computational methods used in this study are 

provided in the supplemental Methods. 

 

 

Results 

 

A balanced landscape of human bone marrow hematopoiesis 

 

We sought to develop a high-quality single-cell reference atlas of bone marrow hematopoiesis 

where there are balanced proportions of rare hematopoietic stem and progenitor cells (HSPCs) 

alongside terminally differentiated populations. To achieve this, scRNA-seq bone marrow data 

from two unsorted bulk datasets 17–19 was integrated together with three CD34+ sorted datasets 
21–23 and a sixth dataset comprising both unsorted bulk and CD34+ sorted data 3. After quality 

control, this resulted in 263,159 high-quality scRNA-seq profiles from bone marrow cells wherein 

89,404 cells were derived from CD34+ sorted samples and 173,755 cells were derived from 

unsorted bulk samples. Following dimensionality reduction and focused clustering (supplemental 

Methods), we identified 55 hematopoietic cell states, with 40 of those states residing along 

continuous differentiation trajectories starting from primitive HSCs and ending at terminal cell 

states spanning erythroblasts (Ery), megakaryocytes (Mk), granulocytes (Gran), monocytes 

(Mono), conventional dendritic cells (cDC), plasmacytoid dendritic cells (pDC), and B cells. The 

final reference atlas, alongside annotations of the 55 cell states, is shown in Figure 1.  

 

Comparison of transcriptional cell states and functionally defined HSPC subsets 

 

To validate the reference map and cell state assignments, transcriptional cell state annotations 

were compared against immunophenotypicially pure HSPC populations. First, we projected bulk 

RNA-seq profiles from flow-sorted populations along the hematopoietic hierarchy 14,36,37, 

confirming their ordering along our UMAP embedding of hematopoiesis (Figure 2A). Multipotent 

progenitors (MPPs), megakaryocyte-erythrocyte progenitors (MEPs), and common myeloid 

progenitors (CMPs) were previously shown to be admixed populations, separable into 

multilineage F1 subfractions or Mk/Ery committed F2/F3 fractions 38. Projection of transcriptomes 

from these subfractions confirmed that multilineage F1 fractions and Mk/Ery restricted F2 and F3 

fractions within MPPs, CMPs, and MEPs were positioned in alignment with their known functional 

characteristics (Figure 2B).  
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Next, we evaluated the projection of scRNA-seq profiles collected following flow sorting of various 

hematopoietic stem and progenitor fractions from two studies 20,39 (supplemental Figure 1). 

Immunophenotypic fractions including MPPs, lympho-myeloid primed progenitors (LMPPs), 

CMPs, MEPs, and granulocyte-monocyte progenitors (GMPs) were found to be transcriptionally 

admixed and span multiple cell states  (supplemental Figure 1), consistent with prior reports of 

functional heterogeneity within these fractions 38,40,41. Yet, variation was observed based on gating 

strategies. For example stringently gated populations in Karamitros et al 40 yielded more 

homogeneous LMPP, GMP, and multi-lymphoid progenitor (MLP) populations by scRNA-seq 

projection (Figure 2C). Re-analysis of index-sorted scRNA-seq profiles 16 GMPs and MEPs with 

CD38mid immunophenotypes were enriched for true progenitors while those with CD38high 

immunophenotypes were enriched for more differentiated precursors (supplemental Figure 2A-

C). Single-cell functional assays confirmed that individual CD38mid GMPs and MEPs formed 

colonies more effectively than CD38high GMPs and MEPs (supplemental Figure 2D-J).  

 

In contrast to hematopoietic progenitors, immunophenotypically defined HSC fractions were 

relatively pure and exhibited greater concordance with transcriptional cell state annotations 

(supplemental Figure 1A,E and Figure 2D). Notably, higher concordance between 

transcriptionally and immunophenotypically defined HSCs with increasing stringency of markers 

used in HSC purification, reaching 90% concordance among highly pure long-term (LT) HSC 

fractions defined with additional markers including CD49f+ 42–44 (Figure 2D-E). Collectively, these 

analyses show agreement between transcriptionally defined cell states with functionally defined 

HSPC fractions and, most importantly, demonstrate a high concordance between transcriptional 

HSCs within our reference map and functionally defined LT-HSCs.  

 

Uncovering gene expression programs across hematopoietic differentiation 

 

To leverage this transcriptome-level expression information across 55 cell states, gene 

expression programs underlying hematopoietic differentiation were characterized in an 

unsupervised manner. Consensus NMF (cNMF) 32 was performed across the reference atlas 

resulting in the identification of 48 distinct gene expression programs, each representing groups 

of genes with correlated expression across human hematopoiesis. 36 programs were specific to 

hematopoietic cell states, while 12 programs captured the activity of biological processes 

spanning the cell cycle, oxidative phosphorylation, and stress response, among others (Figure 
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2F). To characterize these gene expression programs, we identified key transcription factors (TF) 

regulons (supplemental Figure 3A) and biological pathways (supplemental Figure 3B) 

underlying these molecular programs. Notably, while the G2 and M phases of the cell cycle are 

typically grouped into a single molecular program 45, NMF decoupled these stages into distinct 

molecular programs allowing us to observe stepwise activation of S-phase, G2-phase, and M-

phase molecular programs within our dataset (supplemental Figure 3C-K). 

 

To understand how these gene expression programs vary across the continuum of human 

hematopoietic differentiation, we performed pseudo-time analysis 35 along each lineage captured 

within our reference map. Of note, we also developed an approach to project hematopoietic 

pseudo-time estimates onto query data and validated the accuracy of this approach in an 

independent test dataset 46 (supplemental Figure 4A-C). These analyses revealed the key 

genes and transcription factors underlying successive waves of molecular programs induced 

alongside hematopoietic differentiation towards human monocyte and erythroid lineages (Figure 

2G-H and supplemental Figure 4D-I) as well as B cell, pDC, cDC (supplemental Figure 5), 

megakaryocyte, eosinophil/basophil/mast cell (EoBasoMast), and neutrophil lineages 

(supplemental Figure 6). 

 

Assignment of individual leukemia cells to precise hematopoietic cell states  

 

Initial classification of acute leukemia involves the determination of hematopoietic lineage through 

a small number of cell surface markers. Now that we had a precise map of cell states spanning 

normal human hematopoiesis, we asked whether the thousands of gene expression markers 

available across these hematopoietic states could improve lineage classification in acute 

leukemia. To validate our transcriptional approach for leukemia cell classification, we projected 

scRNA-seq profiles from leukemia samples with clearly defined lineage features. As expected, 

Pro-B cells were expanded in B-acute lymphoblastic leukemia (B-ALL) 47 (Figure 3A), multipotent 

MLPs were expanded in mixed-phenotype acute leukemia (MPAL) 36 (Figure 3B), pDCs were 

expanded in blastic plasmacytoid dendritic cell neoplasm (BPDCN) 48 (Figure 3C), Mk precursors 

(MkP) were expanded in acute megakaryoblastic leukemia (AMKL) 49 (Figure 3D), and 

erythroblasts were expanded in acute erythroid leukemia (AEL) 50 (Figure 3E).  

 

To map AML samples to precise cellular states along human hematopoiesis we first performed 

scRNA-seq profiling on 12 AML patient samples harbouring either myelodysplasia (MDS) related 
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genetic features or classical alterations involving NPM1 or KMT2A. Next, scRNA-seq profiles from 

eleven studies were re-analyzed 2,3,36,49–56 comprising an additional 154 adult and pediatric AML 

samples and 9 MPAL samples. After quality control and exclusion of mature lymphocytes, 

composition analysis utilizing 600,570 cells mapped to 38 cell states revealed patterns of 

covariation among leukemia cell states (Figure 3F, supplemental Figure 7A). Next, similar cell 

states which co-occurred across patient samples were collapsed together, thus condensing the 

38 precise cell states into 11 broader differentiation stages including HSC/MPP-like, LMPP-like, 

Early Lymphoid, MEP/MkP-like, EoBasoMast, Early Erythroid, Late Erythroid, GMP-like, 

ProMono-like, Mono-like, and cDC-like (supplemental Figure 7B). We confirmed that projected 

AML cells retained gene expression programs reflecting their assigned stages along 

hematopoietic differentiation (supplemental Figure 7C-D). We further confirmed that primitive 

HSC/MPP-like and LMPP-like blasts are enriched for Quiescent LSPC signatures 4 and genes 

upregulated within sorted LSC+ fractions 57 (supplemental Figure 7E-G).  

 

Through single-cell composition analysis of 175 AML and MPAL samples, eleven patient subtypes 

were defined through differences in leukemia cell state composition (Figure 3G-J, supplemental 

Figure 8). Notably, these AML subtypes span multiple stages of differentiation across multiple 

lineages, including primitive subtypes enriched for HSC/MPP (s1), Early Myeloid (s2), and Early 

Lymphoid (s3) populations (Figure 3H), novel subtypes enriched for MEP/MkP (s4), and Erythroid 

(s5,s6) lineage abundance (Figure 3I), those involving multiple stages of monocytic or dendritic 

differentiation (s7,s8), and those specifically enriched for GMP-like (s9,s10) or mature myeloid 

(s11) populations (Figure 3J). Interestingly, some patient samples within subtype 11 appear to 

lack stem and progenitor involvement entirely, with the earliest AML population corresponding to 

a ProMono-like or Monocyte state (supplemental Figure 8). This lack of shared progenitor states 

suggests heterogeneous disease origins among patient samples despite a shared clinical 

diagnosis of AML. 

 

Genetic determinants of lineage priming in acute myeloid leukemia 

 

Given the diversity in lineage priming in AML observed through single-cell composition analysis, 

we sought to understand how genetic driver alterations influenced lineage priming at the level of 

patient cohorts. Marker genes were identified for each AML differentiation stage and used to train 

sparse regression models to estimate their relative abundance from bulk RNA-seq profiles 

(supplemental Methods; supplemental Figure 9). Leveraging bulk RNA-seq of 864 AML patients 
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spanning three cohorts 4,58–60, associations were identified between inferred differentiation stage 

abundance and the presence of specific driver mutations (Figure 4A) as well as key cytogenetic 

alterations (supplemental Figure 10A). Furthermore, associations between inferred 

differentiation stage abundance with AML morphology and hierarchy subtype served as validation 

for our approach (supplemental Figure 10B-C). 

 

We next evaluated determinants of lymphoid lineage priming in AML. Within the single-cell data, 

we observed co-clustering of AML and MPAL samples within subtype 3, which was enriched for 

Early Lymphoid (MLP and CLP) abundance (Figure 4B). This highlights the biological continuum 

between these disease classes. Through bulk analysis, we confirmed that MPAL is highly 

enriched for Early Lymphoid cells compared to AML (p=8.8e-14) (Figure 4C). Within AML 

patients, we found high Early Lymphoid abundance to be associated with NUP98-NSD1 fusions 

(p=0.0036) and RUNX1 mutations (p=1.8e-7) (Figure 4D-E). 

 

We next examined erythroid lineage priming. AML and AEL samples co-clustered within subtypes 

5 and 6 from single-cell composition analysis, which were enriched for Early Erythroid (CFU-E, 

Pro-Erythroblast, and Basophilic Erythroblast) abundance (Figure 4F). Through bulk RNA-seq, 

we confirmed that patient samples with French-American-British (FAB) classes assigned as M6 

(erythroid) were highly enriched for Early Erythroid cells compared to M0-M5 AMLs (p=0.00067) 

(Figure 4G, supplemental Figure 10D). Considering genetic associations, higher Early Erythroid 

abundance was observed with TP53 mutations (p=7.6e-15), complex karyotype (p=3.9e-12), and 

MDS-related cytogenetic alterations including monosomy 7/del (7q) (p=0.0031), monosomy 

17/del(17p) (p=0.0077), and monosomy 5/del(5q) (p=0.00064) (Figure 4H, supplemental Figure 

10E-F). Notably, differential priming towards myeloid and erythroid lineages also captured inter-

patient heterogeneity within 136 AEL samples, wherein higher Early Erythroid abundance was 

associated with TP53 mutations (p=3.6e-9) and Poor cytogenetic risk (p=1.1e-9) while high GMP-

like abundance was associated with KMT2A alterations (p=0.00046) and Good/Intermediate risk 

(p=0.00032) (Figure 4I-J).  

 

Collectively, these data highlight that priming towards lymphoid and erythroid lineages in AML is 

influenced by genomic drivers of the disease. Furthermore, despite clear criteria delineating AML 

from MPAL and AEL based on a small collection of morphological or immunophenotypic markers, 

high-resolution maps leveraging thousands of gene expression markers suggest that these 

diseases exist along a biological continuum with poorly demarcated boundaries.  
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Impact of genetic subclones on cellular hierarchies in AML 

 

Recognizing that genomic drivers are associated with lineage priming in AML at the patient level, 

we next asked whether these relationships could be identified at the level of genetic subclones 

within individual patients. Various approaches were utilized to evaluate this, including the 

identification of expressed mutations or copy number alterations within a subset of patients, the 

use of previously annotated genetic information from re-analyzed studies 2,54,56, as well as de novo 

profiling of in-house patient samples with single-cell targeted DNA (scDNA-seq) with 

immunophenotyping through the Tapestri platform. Using these genetic profiles, the differences 

in AML lineage priming between genetic subclones within individual patients could be evaluated 

(Figure 5A).  

 

These analyses uncovered examples of mutations influencing AML hierarchies, including lineage 

skewing from myeloid to erythroid in a subclone that acquired MDS-related chromosomal 

alterations (Figure 5B-D), or differentiation block at the level of HSC/MPPs induced by a 

subclonal GATA2 mutation (Figure 5E-G). In a sample that was profiled through scRNA-seq as 

well as Tapestri scDNA-seq + immunophenotype (Figure 5H), a balanced composition comprised 

of a CD34-expressing primitive population and a CD11b-expressing mature monocytic population 

could be identified (Figure 5I-J). Through scDNA-seq with immunophenotyping, we found that 

cells which belonged to the ancestral Monosomy 7 and RUNX1 clone were predominantly 

primitive (CD34+CD11b-), while cells that belonged to a KRAS mutated subclone were 

predominantly mature (CD34-CD11b+) (Figure 5K-L). These data demonstrate that subclonal 

genetic mutations can induce lineage biases, differentiation blocks, and even mature myeloid cell 

expansion within AML patients.  

 

These differences in cell composition between genetic subclones suggest that distinct leukemia 

cell hierarchies can co-exist within a subset of AML patients. Through paired scRNA-seq profiling 

of a primary AML sample and its corresponding patient-derived xenograft (PDX), we confirmed 

that the hierarchy of a PDX sample can differ from that of the original primary AML sample (Figure 

5M-N). Notably, while the primary sample comprised both primitive and mature cells, these 

primitive cells were absent from the PDX suggesting that the PDX was sustained by a mature 

myeloid population that had acquired stemness properties. This raises the question of whether 

distinct leukemia cell hierarchies within an AML patient could be sustained by co-existing primitive 

and mature populations with functional LSC properties. 
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Distinct leukemia cell hierarchies can co-exist within individual AML patients 

 

To formally investigate whether distinct LSC-driven hierarchies may co-exist within certain AML 

patients, we re-analyzed engraftment data from 74 AML patients wherein leukemia cells were 

sorted into four fractions based on surface CD34 and CD38 and engrafted into NSG mice at 

varying doses 57. Functional LSC activity, defined as the ability to initiate leukemic grafts, was 

observed within the CD34+CD38- fraction for 56 out of 74 patients (76%). Of the remaining 18 

patients (18%) without LSC activity in the CD34+CD38- fraction, 7 patients (9%) had LSC activity 

detected within the CD34+CD38+ fraction while 11 patients (15%) had LSC activity restricted to 

the CD34- fraction. Considering the majority of patients with LSC activity within the CD34+CD38- 

fraction, 8 patients (11%) had engraftment restricted to CD34+CD38- cells while 15 patients (20%) 

had engraftment restricted to CD34+ fractions. These engraftment data are outlined in 

supplemental Figure 11.  

 

Interestingly, 29 patients (39%) had observed functional LSC activity in three or more fractions, 

spanning CD34+ and CD34- immunophenotypes. The presence of LSC activity across multiple 

CD34 and CD38 fractions could be related to previously documented immunophenotypic plasticity 

of CD34 and CD38 marker expression among primitive LSCs 57,61–66, particularly in patients with 

primitive hierarchies with extensive stem and progenitor involvement 4. Alternatively, in other 

patients, this could also be explained by co-existing hierarchies sustained by primitive and mature 

populations with functional LSC potential. To find examples of the latter, we evaluated 

immunophenotypes of PDXs generated from each CD34 and CD38 fraction and identified two 

patient samples with distinct PDX immunophenotypes following engraftment from CD34+ and 

CD34- primary fractions as likely containing distinct LSC populations.  

 

For these two patients, we performed scRNA-seq on the unsorted primary patient sample as well 

as sorted CD34+CD38- (34+38-) and CD34-CD38+ (34-38+) fractions. We engrafted these 

CD34+CD38- and CD34-CD38+ fractions individually and performed scRNA-seq on the resulting 

PDX cells (Figure 6A). Flow cytometry and scRNA-seq analysis on primary AML cells from one 

of these patients (pt.90240) revealed multiple leukemia cell populations spanning LMPP-like, 

CLP-like, GMP-like, Pre-DC-like, and Mono-like (Figure 6B-C, supplemental Figure 12). Within 

the CD34+CD38- fraction (0.06% of AML cells) nearly all cells were LMPP-like (Figure 6D). PDX 

samples derived from this fraction recapitulated the complete patient hierarchy by both flow 

cytometry and scRNA-seq composition (Figure 6E). The CD34-CD38+ fraction (11% of AML 
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cells) comprised primarily of downstream progenitors (Figure 6F). PDX samples derived from this 

fraction were almost fully CD34-, composed entirely of dendritic cell precursors and mature 

monocytes (Figure 6G). Similar results were observed with the second patient (pt.90394) wherein 

the CD34+CD38- graft recapitulated the full AML hierarchy while the CD34-CD38+ graft was 

comprised entirely of mature myeloid cells (supplemental Figures 13 and 14). Collectively, these 

data provide proof of principle for a model wherein distinct leukemia cell hierarchies can co-exist 

within AML individual patients (Figure 6H), which may in turn contribute to AML evolution and 

relapse following selective pressures applied by different therapies (Figure 6I).  

  

 

Discussion 

 

Our map of bone marrow hematopoiesis provides an in-depth characterization of human 

hematopoietic differentiation, ranging from early HSPC to terminally differentiated populations 

across multiple lineages. Most importantly, through careful annotation and validation, this curated 

map constitutes a valuable resource for those planning to utilize scRNA-seq data to study either 

normal or leukemic hematopoiesis. To maximize the public utility of our resource, we have 

developed an R package (https://github.com/andygxzeng/BoneMarrowMap) to enable reference 

mapping and annotation of any normal or leukemic scRNA-seq sample within minutes. Further, 

an improved understanding of the relationship between transcriptionally defined cell states with 

immunophenotypically defined cell populations will enable smoother translation of insights from 

single-cell analyses into functional experiments.  

 

The application of this reference mapping approach to classify leukemia cells, particularly in AML, 

has allowed us to confront disease heterogeneity in a biologically meaningful way. Strikingly, 

some AML samples exhibited virtually no overlap in cell state involvement with one another, 

possibly reflecting disparate cellular origins of their diseases. In contrast, other AML samples 

shared extensive overlap in cell state involvement with MPAL or AEL samples, challenging 

traditional diagnostic boundaries between classes of leukemia 1. Moving towards homogeneous 

disease classes is critical for properly evaluating therapy response, and the thousands of new 

markers uncovered through scRNA-seq could be leveraged to refine diagnostic criteria in the 

classification of acute leukemia. 
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Last, our findings highlight the complex interplay between genetic alterations and lineage 

determination in AML, identifying mutations and cytogenetic alterations that are highly associated 

with the abundance of 11 AML differentiation stages across patient cohorts. By analyzing AML 

genetics at the single-cell level, we expanded upon previous studies 56,67,68 to show that distinct 

genetic subclones can differ in their leukemia cell hierarchy composition, and formally 

demonstrated that distinct AML hierarchies sustained by distinct LSC populations can co-exist 

within a subset of patients. The co-existence of primitive and mature AML populations with 

functional LSC properties was previously proposed in a subset of AML patients 69,70, and 

monocytic LSCs have emerged as an important source of relapse from Venetoclax-based therapy 
71,72. Though this appears to be a rare occurrence, AML samples with co-existing hierarchies may 

be better poised to evolve in response to targeted therapies and other selective pressures. Finally, 

charting the specific lineage perturbations caused by each genetic alteration provides a 

framework for reconciling genetic clonal evolution with changes in leukemia cell hierarchy 

composition in explaining evolution and relapse in AML. 
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Resource Availability 

 

An R package for projecting and classifying hematopoietic cells from query data is available at 

(https://github.com/andygxzeng/BoneMarrowMap). The BoneMarrowMap atlas can be explored 

interactively through the cellxgene web portal: https://cellxgene.cziscience.com/e/cd2f23c1-

aef1-48ae-8eb4-0bcf124e567d.cxg/. Annotated raw count data for BoneMarrowMap and AML 

samples profiled within this study will be made available at time of journal publication. For earlier 

access through collaboration, please contact Andy Zeng (andy.zeng@mail.utoronto.ca) and 

John Dick (john.dick@uhnresearch.ca) for inquiries. 
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Figure 1. A balanced landscape of human bone marrow hematopoiesis
Single-cell transcriptional atlas of human hematopoiesis with balanced representation of CD34+ stem and 
progenitor cells together with terminally differentiated populations, comprising 263,159 bone marrow cells spanning 
55 cell states across 45 donors from six studies.
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Figure 4. Genetic determinants of lymphoid and erythroid priming in acute leukemia
A) Association between mutation states and inferred abundance of AML differentiation stages from 864 AML samples 
profiled by RNA-seq. The magnitude of each association, quantified as the –log10(pvalue), is depicted through the 
size and color intensity of each dot, wherein higher abundance is green and lower abundance is purple. Only 
associations at uncorrected p < 0.05 are shown, those at FDR < 0.05 are starred. B) Representative AML and MPAL 
patient samples from Subtype 3, which is enriched for Early Lymphoid cells. C) Comparison of inferred Early 
Lymphoid abundance between 126 MPALs and 122 AMLs from Montefiori et al 2021. D) Association between 
NUP98-NSD1 fusion status and RUNX1 mutation status with inferred Early Lymphoid abundance within 864 AML 
samples. E) Representative AML and AEL patient samples from Subtypes 5 and 6, which are enriched for Early 
Erythroid cells. G) Association of M6 FAB morphology with inferred Early Erythroid abundance within 864 AML 
samples. H) Association of TP53 mutation status, complex karyotype, and alterations in chromosomes 5, 7, and 17 
with inferred Early Erythroid abundance within 864 AML samples. I-J) Erythroid vs myeloid priming within 136 AEL 
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Figure 6. Distinct leukemia cell hierarchies can co-exist within individual AML patients
A) Outline of experimental workflow for identifying co-existing LSC-driven hierarchies in AML. Briefly, the primary 
AML patient sample, CD34+CD38- fraction, and CD34-CD38+ fraction are profiled by flow cytometry and scRNA-
seq. Patient-derived xenografts (PDXs) from the CD34+CD38- fraction and from the CD34-CD38+ fraction are 
also profiled by flow cytometry and scRNA-seq and the composition of their leukemia cell hierarchies are 
compared. B-G) Results for AML pt #90240. B) Immunophenotype and scRNA-seq cell state composition of 
primary AML. C) scRNA-seq projection results of primary AML sample. D) Immunophenotype and scRNA-seq 
composition for CD34+CD38- fraction, representing 0.06% of primary cells. E) Immunophenotype and scRNA-seq 
composition for PDX derived from CD34+CD38- fraction, recapitulating the primary AML hierarchy. F)
Immunophenotype and scRNA-seq composition for CD34-CD38+ fraction, representing 11% of primary cells. G)
Immunophenotype and scRNA-seq composition for PDX derived from CD34-CD38+ fraction, restricted to mature 
AML populations. H) Model depicting the co-existence of leukemia cell hierarchies within a subset of AML 
patients, which could originate from intra-tumoral genetic heterogeneity. I) While relapse to conventional therapies 
is associated with expansion of primitive clones, acquisition of self-renewal at later stages of AML differentiation 
could enable expansion of self-sufficient monocytic clones at relapse to novel therapies targeting primitive AML 
cells.
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